Handbook of Clinical Neurology, Vol. 184 (3rd series)
Neuroplasticity: From Bench to Bedside

A. Quartarone, M.F. Ghilardi, and F. Boller, Editors
https://doi.org/10.1016/B978-0-12-819410-2.00001-1
Copyright © 2022 Elsevier B.V. All rights reserved

Chapter 1

Defining neuroplasticity

GIORGIO M. INNOCENTT*"

Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

Abstract

Neuroplasticity, i.e., the modifiability of the brain, is different in development and adulthood. The first
includes changes in: (i) neurogenesis and control of neuron number; (ii) neuronal migration;
(ii1) differentiation of the somato-dendritic and axonal phenotypes; (iv) formation of connections;
(v) cytoarchitectonic differentiation. These changes are often interrelated and can lead to: (vi) system-wide
modifications of brain structure as well as to (vii) acquisition of specific functions such as ocular domi-
nance or language. Myelination appears to be plastic both in development and adulthood, at least, in
rodents. Adult neuroplasticity is limited, and is mainly expressed as changes in the strength of excitatory
and inhibitory synapses while the attempts to regenerate connections have met with limited success. The
outcomes of neuroplasticity are not necessarily adaptive, but can also be the cause of neurological and

psychiatric pathologies.

INTRODUCTION

The term “plasticity” referred to the nervous system is
often used, but rarely defined. It includes changes in neu-
ral structure and/or function often pooled together as
“brain remodeling” (Merzenich et al., 2014). Therefore,
the term has unclear boundaries that I will try to sharpen
in this chapter.

Neuroplasticity is at the roots of why the nervous sys-
tem exists at all. Indeed, the nervous system exists so that
an input from the environment is transformed into an out-
put by the animal. Neuroplasticity however exceeds the
normal, more, or less reflexive elaboration of the
response to a stimulus in that the nervous system is mod-
ified by the environmental input. This is precisely what
happens when the animal learns, but 1 will keep learning
at the periphery of the present chapter (see Chapter 2 by
Mangcini et al.).

Neuroplasticity includes a broad variety of phenom-
ena spanning from development to adulthood. Therefore,
it should not be surprising that it might be difficult to

ascribe the origin of the concept unequivocally to one
of the founders of our discipline (discussed in Jones,
2000, 2004; Berlucchi and Buchtel, 2009). The many
facets of neuroplasticity will be dealt briefly here; each
of them would be worth a full chapter. Most of the data
are derived from animal studies where it is easier to iden-
tify the underlying mechanisms and therefore might
guide the interpretation of human cases. Other reviews
exist which detail different aspects of neuroplasticity
(e.g., Williams, 1988; Sur and Leamey, 2001; Rouiller
and Olivier, 2004; Voss and Zatorre, 2012; Sur et al.,
2013; Medini, 2014; Merzenich et al., 2014; Castaldi
et al, 2020; La Rosa et al., 2020; Magee and
Grienberger, 2020; Pan and Monje, 2020).

DEVELOPMENTAL PLASTICITY

The developing brain is exquisitely plastic and this pro-
vides an exaggerated image of mechanisms some of
which still exist in the adult. Developmental plasticity
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is restricted to epochs in the life of the brain usually
called “critical periods” or “sensitive periods”. Since
different aspects of brain development can be modified,
several sensitive periods exist whose temporal boundaries
can be modified as well, i.e., terminated precociously
(e.g., Innocenti et al., 1985; Zufferey et al., 1999) or
extended (below).

Sources of developmental neuroplasticity relate to the
following

Neurogenesis and the control
of neuronal number

Neuronal number can be manipulated either by prevent-
ing the regular neuronal death which occurs after neuro-
genesis or by exaggerating it. This aspect of neuronal
plasticity has a time-honored history. In the first half of
the last century observations by the fathers of experimen-
tal embryology including Detwiler, Shorey, Hamburger,
and Levi-Montalcini demonstrated that limb excision
caused loss in the number of motor neurons and spinal
ganglia neurons in amphibia and chicks while peripheral
grafts had the opposite effect. This line of work led to the
concept that neuronal death occurs in normal develop-
ment and that the competitive success for the innervation
of the peripheral territory (skin or muscle) is necessary
for neuronal survival. This concept eventually led to
the discovery of neurotrophins (reviewed in Hamburger,
1988). The view that the mere competition for trophic fac-
tors in the periphery regulates neuronal survival was
challenged by the discovery of intrinsically different fit-
ness of spinal ganglia neurons.

In the cerebral cortex, cell number is regulated by two
factors: (i) the number of cells leaving the cell cycle (the
Q fraction) vs that of the reentering the cell cycle (the
P fraction), in the proliferative ventricular zone, and
(ii) the developmental death of neurons and neuronal pre-
cursors (apoptosis). Manipulating the first factor by act-
ing on the mitotic inhibitor p27 led to either increase or
decrease of cortical layers thickness indicating changes
in neuron number (Caviness et al., 2003). Interfering
with apoptosis in caspase-3 orEphA7knock out mice
led to enlarged cerebral cortex with a tendency to gyra-
tion (Roth et al., 2000; Depaepe et al., 2005).

Microcephaly is a human condition characterized by
decreased neuronal numbers. The causes include infec-
tions (Devakumar et al., 2018) but the pathogenesis,
arrested neuronal production, or excessive neuronal
death, is uncertain.

Neuronal migration

The journey leading neurons from the site of generation
in the periventricular proliferative zone to their final loca-
tion in cortex is a well-regulated series of events, which

normally leads the earliest generated neurons to the bot-
tom of the cortex and the later generated neurons to the
top (Rakic, 1974). This journey can be dramatically
altered in the “reeler” mouse where the absence of the
extracellular matrix protein reelin leads to a reversed
and somewhat scrambled distribution of neuronal birth-
day in cortex, with the early generated neurons at the top
and the later neurons below (Caviness, 1976; Prume
et al., 2018). Incoming thalamocortical axons, which
normally are guided into the cortex by the early gener-
ated neurons at the bottom of the cortex take an abnormal
trajectory to the top of the cortex, before diving down
(Caviness, 1976). They are accompanied by oligoden-
drocytes which are not seen in the wild type mouse
(Prume et al., 2018).

Other connections, including callosal connections are
preserved in the “reeler” (Simmons et al., 1982). Some
visual functions and receptive field properties are
preserved as well (Sinex et al., 1979; Drager, 1981;
Simmons and Pearlman, 1983). Somatosensory func-
tions are preserved (Guy and Staiger, 2017). On the
whole the “reeler” and the experimentally induced
microgyria (below) are examples of functional resilience
of cerebral cortex against severe anatomical alterations.

Less dramatic alterations of neuronal migration were
described in hypothyroidism (Berbel et al., 1993) or as
neuronal ectopias of various origin sometimes associated
with epilepsy (reviewed in Luhmann, 2016).

Neuronal differentiation

The acquisition of neuronal phenotype involves changes
at the soma-dendritic complex and at the axon. These
changes are related to the genetic makeup of the neuron
but require interaction with the cellular environment,
which in turn might mediate interaction with the environ-
ment of the animal. The acquisition of both the dendritic
and the axonal phenotype involves progressive and
regressive events. The progressive events comprise elon-
gation, mediated by growth cones, radial growth, forma-
tion of spines or synaptic boutons and branching. The
regressive events, are extremely common across struc-
tures, systems, and species and involve elimination of
part of the dendritic arbor (Leuba and Garey, 1984;
McMullen et al., 1988; Ramoa et al., 1988; Ulthake
et al., 1988; Koester and O’Leary, 1992). In extreme
cases the regressive events can change the overall neuro-
nal morphology from the pyramidal to the spiny stellate
typology (Vercelli et al., 1992; Callaway and Borrell,
2011). The dendritic changes involve modifications of
the dendritic microtubules (Khatri et al., 2018;
Parcerisas et al., 2020) under the control of dendritic com-
petition (Linden and Serfaty, 1985), activity (Callaway
and Borrell, 2011; Skelton et al., 2020), experience



DEFINING NEUROPLASTICITY 5

(Breach et al., 2019; Villanueva Espino et al., 2020). The
areal location of cortical neurons, not their target, was
found to be related to the morphology of dendritic arbors
(Vercelli and Innocenti, 1993).

Formation of connections

Axonal differentiation involves elongation to target,
guided by environmental cues, target recognition, target
ingrowth, synaptogenesis (reviewed by Kolodkin and
Tessier-lavigne, 2011; Zhang et al., 2017; Balaskas
et al., 2019). The formation of connections is character-
ized both by progressive and regressive events. The latter
consist in the massive elimination of long transient
axons, initially described for the callosal connections
of the cat (Innocenti et al., 1977; Innocenti, 1981,
Berbel and Innocenti, 1988; LaMantia and Rakic, 1990)
and later generalized to several systems and species, par-
ticularly intra-hemispheric and corticospinal projections
(O’Leary and Stanfield, 1986; De Ledtn Reyes et al.,
2019; reviewed in Innocenti and Price, 2005). Axonal
selection occurs near the target (reviewed in Innocenti,
2020). At the time of cortical ingrowth transient short
branches and synapses are generated mainly in the white
matter while the distribution of intracortical branches and
boutons is as in the adult, although it undergoes a phase of
exuberant synaptogenesis (Innocenti and Price, 2005;
Innocenti, 2020). Subsequent radial axonal growth
paralleled by cytoskeletal changes (Guadano-Ferraz
et al., 1990; Riederer et al., 1990) leads to myelination
of axons whose diameter exceeds the threshold of
0.2 um (Berbel and Innocenti, 1988). Continuing growth
leads to cohorts of different axonal diameters in various
CNS pathways, notably those leaving different cortical
areas (Tomasi et al., 2012; Innocenti et al., 2014).

Activity dependent formation of
connections: Ocular dominance

The final acquisition of the axonal phenotype is
expressed in the formation of interneuronal connections.
This step is controlled by activity. The best studied exam-
ple is the shift of ocular dominance in the primary visual
areas. The field was initiated by the findings that closing
one eye during early life led to loss of the responses to
that eye in visual area 17 (V1) of the cat and signs of neu-
ronal atrophy in LGN neurons. Raising the kitten with
artificially induced strabismus led to loss of binocularly
responsive neurons (Hubel and Wiesel, 1965; Wiesel and
Hubel, 1965). The work was later generalized to the
macaque monkey where the loss of responses to the
deprived eye could be ascribed to the loss of genicu-
locortical projection concerned with that eye (Hubel
etal., 1977). These findings had an enormous resonance,

which continues to this day. Subsequent work was per-
formed in rodents with improved anatomical resolution.
Neurons receiving from the deprived eye were found to
lose synaptic spines (Coleman et al., 2010; Yu et al.,
2011; Sun et al., 2019). Studies aimed at defining the
conditions which terminated the critical period discov-
ered the role of GABAergic transmission (Huang
et al., 1999; Fagiolini and Hensch, 2000), specified the
role of perineuronal extracellular matrix and the behavior
of geniculo-cortical terminations (reviewed in Hensch,
2005; see also Berardi et al., 2004). Studies succeeded
at reopening the critical period in mature animals by
locally infused norepinephrine (Kasamatsu et al., 1979),
reducing intracortical inhibition (Harauzov et al., 2010;
Cisneros-Franco and De Villers-Sidani, 2019), deleting
proteins of the Major Histocompatibility Complex
(Adelson et al., 2016), grafting embryonic inhibitory
neurons (Davis et al., 2017), subministering the antide-
pressant fluoxetine (Steinzeig et al., 2019), injuring the
optic nerve (Vasalauskaite et al., 2019), depriving the
animal of somatosensory and auditory input (Teichert
et al., 2019). These studies raise the hope that recover-
ing juvenile plasticity might be used to counteract
pathologies of the adult brain (Hiibener and
Bonhoeffer, 2014).

A different concept of plasticity: homeostatic plastic-
ity was put forth (reviewed in Turrigiano and Nelson,
2004). It signifies that neurons deprived of input tend
to increase their firing. Confirming this concept, after
short (2h) periods of monocular deprivation, in adult
humans, the BOLD signal was boosted for the deprived
eye in V1, V2, V3 and V4, specifically for high spatial
frequency of the stimulus, consistent with the involve-
ment of the parvocellular input to the cortex (Binda
et al., 2018).

Plasticity of cortical connections

The selection of juvenile cortico-cortical connections
from the exuberant stock mentioned above is modulated
by different conditions. One is the peripheral input in the
form of organized thalamocortical input (Shatz, 1977) or
retinal input. Two changes were caused by these manip-
ulations: loss of projections which would normally be
maintained (Innocenti and Frost, 1980; Zufferey et al.,
1999) and maintenance of projections which would nor-
mally be eliminated (Shatz, 1977; Callaway and Katz,
1991; Zufterey et al., 1999; De Ledon Reyes et al.,
2019). These results suggested that cortical axons are
labile at birth and require activity for their stabilization
and maintenance. Short periods of normal vision are
sufficient to stabilize the connections and trigger their
further differentiation (Innocenti et al., 1985; Zufferey
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et al., 1999; Box 1.1). Modification of cortical connec-
tions in development, with stabilization of connections
normally deleted, were also caused by hypothyroidism
(Berbel et al., 1993) and early cortical lesions (Restrepo
et al., 2003).

Pietrasanta et al. (2012) have reviewed the conse-
quences of deprivation on the development of callosal
connections in rats and their role in the binocularity of
cortical responses.

In humans, Friston has over the years supported the
view of schizophrenia as a disconnection syndrome pre-
sumably caused by failed stabilization of connections in
development (reviewed in Friston et al., 2016). Impaired
development of middle and posterior sector of the Cor-
pus Callosum where described in 6-16 year old children
with early-onset bipolar disorder (Lopez-larson et al.,
2013) and in congenitally blind children (Ptito et al.,
2008; Cavaliere et al., 2020, and below).

BOX 1.1. THE DEVELOPMENT OF CALLOSAL AXONS BETWEEN VISUAL AREAS
17 AND 18 IN CATS BINOCULARLY DEPRIVED OF VISION WITH EYELID SUTURE.

Binocular eyelid suture prevents pattern vision, resembling bilateral cataract. It massively reduces the number of axons inter-
connecting the primary visual areas of the two hemispheres and the loss appears to be irreversible (Innocenti and Frost, 1980;
Innocenti et al., 1985). The majority of the remaining axons are severely stunted; they are thinner and exhibit fewer branches, and
synaptic boutons (Figs. 1.1 and 1.2). The effects are already seen after 1 month of deprivation. However, 10 days of normal visual
experience after natural eye opening (at around 7 days) prevent the loss of callosal axons (Innocenti et al., 1985) and after 8 days
of normal visual experience the arbors developed nearly normally in spite of binocular deprivation (Fig. 1.3). This suggests that
even a limited amount of normal visual experience can stabilize the juvenile axon and triggers its normal development. Intra-
areal connections are similarly affected. They lose the normal patchy distribution of terminals and single axons are severely
stunted (Figs. 1.4 and 1.5). These concepts might apply to other conditions where deprivation has deleterious consequences,
in particular to the acquisition of language (Innocenti, 2007). Interestingly the distributions of CC axon diameters from areas
17 and 18 in the cat (Houzel et al., 1994) and in the monkey (Tomasi et al., 2012) were never previously compared and appear to
be similar.

Normal cats, P65-P79

Callosal axons to 17/18

Deprived until P60-P81

1
J _“7

Dé68.2d

Fig. 1.1. Binocular deprivation by eyelid suture for at least 60 months stunts the development of callosal axons interconnecting
areas 17 and 18 in the cat (D axons). The B axons are from normally reared adult cats. From Zufferey, P.D., et al., 1999. The role
of pattern vision in the development of cortico-cortical connections. Eur J Neurosci 11, 2669-2688. doi: 10.1046/j.1460-
9568.1999.00683.x, modified.
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Fig. 1.2. Binocular deprivation results in thinner callosal axons interconnecting the visual areas 17 and 18 in the cat. Notice the

previously unknown similar distribution of diameters of visual callosal axons in cats (Houzel et al., 1994) and monkey (Tomasi
et al., 2012). The number of axons in each class of diameters is on the corresponding column.

Callosal axons to 17/18

Vision P8-P15, then deprived until P78

D78f D78h

Fig. 1.3. A short period of normal vision followed by binocular deprivation triggers a nearly normal development of callosal
axons. From Zufferey, P.D., et al., 1999. The role of pattern vision in the development of cortico-cortical connections. Eur
J Neurosci 11, 2669-2688. doi: 10.1046/j.1460-9568.1999.00683.x, modified.

Normal , Binocularly deprived

5mm

Fig. 1.4. Binocular deprivation prevents the clustered distribution of local connections in the primary visual areas of the cat.
Three-dimensional reconstruction of the occipital pole of two representative P60 animals. The concentric regions on the dorsal
surface of the brains represent the core of injection, containing densely packed biocytin-labelled cell bodies (black), the region of
diffusely distributed (yellow) and clustered (blue) axons. From Zufferey, P.D., et al., 1999. The role of pattern vision in the devel-
opment of cortico-cortical connections. Eur J Neurosci 11, 2669-2688. doi: 10.1046/j.1460-9568.1999.00683.x, modified.
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Fig. 1.5. Binocular deprivation by eyelid suture stunts the development of local axons in area 17 of the cat. From Zufferey, P.D.,
et al., 1999. The role of pattern vision in the development of cortico-cortical connections. Eur J Neurosci 11, 2669-2688. doi:
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Cytoarchitectonic/areal specializations

In the somatosensory cortex of rodents, the mystacial
vibrissae (whiskers) are represented at the cortical level
by “barrels,” that is, cytoarchitectonic specializations in
layer iv consisting, in the mouse, of a cellular rich wall
and cellular poor hollow (Woolsey and Van der Loos,
1970). These specializations are exquisitely plastic in
development. Cauterization of the whiskers in newborn
mice leads to the disappearance of the corresponding
“barrel” (Van Der Loos and Woolsey, 1973). In contrast,
supernumerary vibrissae cause the appearance of super-
numerary barrels (Van der Loos et al., 1984). A threshold
number of axons are required to innervate the vibrissa
follicle for the supernumerary barrel to appear and there
is a linear correlation between the number of axons and
the size of the barrel (Welker and Van der Loos, 1986).
These findings spurred the powerful hypothesis that
the sensory periphery has a direct control of cortical
cytoarchitectonics (van der Loos and Dorfl, 1978). The
concept was confirmed by the finding that retinal abla-
tion in fetal monkey gave rise to a new cytoarchitectonic
field between areas 17 and 18 (Rakic etal., 1991; Magrou
et al., 2019). The mechanisms involved in the thalamic

specification of barrel field architecture were reviewed
(Dimou and Gotz, 2012; Martini et al., 2018). Prenatal
alcohol exposure decreased the size of the barrel field
(Chappell et al., 2008).

Some degree of columnar organization of cell bodies is
a feature of cortical cytoarchitecture noticed and discussed
for more than 50 years (Bonin and Mehler, 1971 and
quotations therein). The concept of “minicolumns” was
revived recently (reviewed in Buxhoeveden and
Casanova, 2002) as it appears to be at the crossroad
between the developmental concept of “radial unit”
(Rakic, 1988) and the physiologically defined “cortical
columns” (reviewed in Mountcastle, 1997). The radial
arrangement of cortical neurons varies across species
which, sometimes, requires sophisticated morphometric
methods (Rafati et al., 2016). Nevertheless, it was claimed
to be altered in psychiatric conditions, including autism
(Casanova et al., 2006; Casanova and Casanova, 2019).

Microgyria refers to the occurrence of abnormally
small gyri at selective cortical sites, with abnormal lam-
ination whereby mainly superficial layers are maintained
while deep layers are mostly deleted. This defect appears
spontaneously due to ischemic insults which interfere
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with neuronal survival and migration in development. It
can be induced in developing animals by different
methods including the application of ibotenic acid which
mimics the ischemic insult (Innocenti and Berbel, 1991).
For methods to induce cortical malformations see
Luhmann (2016). Interestingly many neurophysiological
properties of the microgyric cortex were preserved
(Innocenti etal., 1993). This was also the case in a human
case of microgyria (Innocenti et al., 2001) and in a mon-
key case of spontaneous microgyria in the motor cortex
(Schmidlin et al., 2009). However abnormal excitability
and auditory perceptions were described in animal work
(Luhmann, 1998; Escabi et al., 2007).

System-wide changes in development

Many, perhaps most of the changes in the developmental
events mentioned above are not restricted to the topical
modifications identified but are rather the expression
of more widespread changes in brain structure. This is
due to the fact that different brain parts influence each
other’s development via trophic interactions and/or
activity.

The late Bertram Payne reviewed several years of
work in his laboratory on the consequences of lesions
of areas 17 and 18 in the cat at birth, 30 days and adult-
hood (Payne, 1999). In summary, the anatomical conse-
quences of the lesion differed at each age. They involved
differential degeneration of retinal ganglion cells classes,
maintenance or elimination of geniculocortical projec-
tions, reorganization of projections among peristriate
visual areas and enhanced projections from extrastriate
visual areas to superior colliculus. The lesions, therefore,
caused a complete rewiring of visual areas, accompanied
by some degree of sparing of visuomotor behavior.

We investigated two cases of patients with early lesions
of primary visual areas (MS and FJ; Kiper et al., 2002;
Knyazeva et al., 2002). The patient with the earliest lesion
(MS) improved with age in some visual tests but both
patients remained impaired in tasks of figure-ground dis-
crimination. The patients were studied with fMRI and
EEG but the answers obtained with these methods were
insufficient. Therefore, we developed an animal model
consisting of early lesion of primary visual areas in the
ferret (Restrepo et al., 2003). In this model the residual
visually responsive portion of cortex showed scrambled
retinotopy and the visual callosal connections were altered.
It remains to be investigated if the patients MS and FJ men-
tioned above had scrambled retinotopy in their visually
responsive cortical regions and if this was the cause for
their impaired figure ground discrimination. Scrambled
retinotopy was also reported in a case of early cortical
lesion (Mikellidou et al., 2019), who however, was appar-
ently not tested for figure-ground discrimination.

A particularly dramatic re-routing of visual projections
to the auditory and somatosensory thalamus was obtained
in the hamster with early lesions (Frost, 1981). Conse-
quent to the lesion visual responses could be obtained in
auditory cortex, (Ptito et al., 2001). Comparable results
were obtained in the ferret (Sharma et al., 2000).
Magrou et al. (2019) reported, in the monkey, changes
in the thalamic projection to the cortex abnormally devel-
oped between areas 17 and 18 after early enucleation
(above). Joint reduction of excitatory-inhibitory balance
is expected to cause circuit-wide changes in an animal
model of Rett syndrome (Banerjee et al., 2016). Con-
versely, multiple factors impact the development of
prefrontal cortex in rodents (Kolb et al., 2012).

Studies on the consequences of early, or congenital
visual deprivation have revealed widespread changes
in connections including, in humans, atrophy of the
geniculostriate system, pulvinar and corticocortical
pathways including, as expected from the animal work
(above), the posterior sectors of the Corpus Callosum
(Ptito et al., 2008; Reislev et al., 2016; Cavaliere et al.,
2020). The same deprivations in animals and in humans
have provided evidence of cross-modal plasticity with
the visual cortex becoming activated by somatosensory
or auditory stimuli (Rauschecker, 1995; Watkins et al.,
2013). Which pathways might be responsible for cross-
modal plasticity is unclear. In development, exuberant,
transient projections are formed from auditory and somato-
sensory areas to visual areas in the cat (Innocenti and
Clarke, 1984; Dehay et al., 1988; Innocenti et al., 1988).
Some of these projections remain in the adult cat and
monkey (Innocenti et al., 1988; Falchier et al., 2002;
Rockland and Ojima, 2003) and could be responsible for
the cross-modal plasticity. In addition, somatosensory
information could be carried by thalamocortical afferents
(Miiller et al., 2019).

In congenitally deaf cats different sectors of the audi-
tory cortex were found to improve visual localization and
visual motion detection (Lomber et al., 2010). Butler and
Lomber (2013) have reviewed the system-wide changes
caused by early deafness.

Language learning

Provides a fascinating example of functional plasticity in
development probably exploiting some of the mecha-
nisms above, in particular, the selection and functional
validation of juvenile, labile cortical connections. The
best explored feature is the development of phonemic
boundaries (Kuhl, 2010) (e.g., the l/r contrast) which
characterizes Indo-European languages but is absent in
Japanese. Initially Japanese children can discriminate
both phonemes but their subsequent exposure to their
native language erases the boundary. Phonetic learning
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occurs within the first year while syntactic learning,
between 18 and 36 months (Kuhl, 2010). Phonemic
learning is enhanced by social interaction as if a
“social gating” exists for language learning. Top-down
language processing occurs between 3 and over 10 years
(Skeide and Friederici 2016).

Word learning revealed changes in Fractional Anisot-
ropy (FA) in the left precentral gyrus, postcentral gyrus
and middle-temporal white matter of preschool children,
suggestive of some kind of white matter plasticity (Ekerdt
et al., 2020).

A critical period might exist for the later developing
aspects of language acquisition since children raised in
isolation seem to have acquired, at best, rudimentary lan-
guage, a striking similarity with the consequences of
visual deprivation in animals (reviewed in Innocenti,
2007).

MYELIN PLASTICITY

The view that axons are cables faithfully conducting
information between neurons has been superseded by
the evidence that they participate in information proces-
sing by performing three kinds of computational opera-
tions: mapping, differential amplification and temporal
transformations (Innocenti et al., 1994, 2016). The latter
operation depends on axonal conduction velocity which
in turn depends on axon diameter. These two parameters
and axon length determine the conduction time (delay)
between neurons. Myelin thickness keeps a nearly stable
relation with axon diameter whereby the g ratio, the ratio
between inner and outer axon diameter, stabilizes around
0.6-0.7, for optimal axonal conduction (Rushton, 1953;
Smith and Koles, 1970; Drakesmith and Jones, 2018). It
follows that myelin thickness tracks whichever changes
in axon diameter are imposed by axonal plasticity in
development. The existence of neurotransmitter recep-
tors on oligodendrocytes and neurotransmitter release
from axons are attractive conditions for the existence
of direct coupling between axonal spiking and myelina-
tion (reviewed by Micu et al., 2018). This evidence prob-
ably clarifies how axonal conduction can be adjusted to
pathway length in development in order to obtain syn-
chronous activation of targets as in the auditory system
(Seidl et al., 2010; Seidl and Rubel, 2016) or in visual
callosal connections (Innocenti et al., 1994). In the audi-
tory system axons of the trapezoid body remain thinner
and less myelinated in animals raised with ear plugs
(Sinclair et al., 2017) a finding resampling the conse-
quences of binocular deprivation on visual callosal con-
nections (Box 1.1).

In development, myelination is also under the control
of thyroid hormones and is seriously impaired by hypo-
thyroidism (Lucia et al., 2018 and references therein).

Social interaction within a critical period is required
for the development of normal myelination in medial pre-
frontal cortex axons (Makinodan et al., 2012) and for the
development of normal social interactions, an effect
which recalls that of visual experience on the develop-
ment of visual callosal connections (Box 1.1).

In recent years the relations between axons and oligo-
dendrocytes or oligodendrocytes precursor cells (OPCs)
have revealed high degrees of complexity. Oligodendro-
cytes are not only involved in producing myelin, but also
in supporting axonal metabolism, probably via transport
of lactate (Fiinfschilling et al., 2012; Lee et al., 2012).

An impressive body of evidence has documented the
occurrence of myelin plasticity in the adult rodent, linked
to the continuous production of OPCs (Rivers et al.,
2008; Kang et al., 2010; Emery, 2010; Hill et al,,
2018; Hughes et al., 2018; see Chang et al., 2016, for
review). Fields (2015) has collected over several years
evidence that myelination is modifiable by activity,
hence might provide a basis for plasticity (memory) in
addition to synaptic modifications (reviewed in Fields
and Bukalo, 2020). Not only OPCs might be involved
in adult myelin plasticity, but perinodal astrocytes as well
(Dutta et al., 2018). Myelin plasticity in the adult is
required for the acquisition of motor skills in mice
(Xiao et al., 2017) and neuronal activity is required for
oligodendrogenesis and adaptive myelination (Gibson
etal.,2014). However, Yeungetal. (2014) have excluded
adult genesis of oligodendrocytes in the adult human
brain by studying the incorporation of "*C. Some degree
of remyelination may occur in MS patients (Kipp et al.,
2012) and in some severe cases production of oligoden-
drocytes has been documented as well (Yeung et al.,
2019).

It is unclear what enhanced myelination might achieve
in the normal adult brain since the g ratio in most axons is
close to the optimal 0.7 value (above). An increase in mye-
lin could occur in two situations (i) myelination of unmy-
elinated or incompletely myelinated axons (Tomassy
et al., 2014), of which a large number exists in the rodent
brain, where most experiments have been performed and
(ii) increased axon diameter which causes an increase in
myelin thickness keeping the axon in the g =0.7 range.
In this second case myelination would rather be an
epiphenomenon of the increased radial dimension of
axons. In truth, the evidence for increased myelination
in humans is scanty (Scholz et al., 2009; Sampaio-
Baptista et al., 2018).

ADULT PLASTICITY

There seems to be a limited amount of neurogenesis in
the adult brain and, particularly in humans, the concept
is controversial (Lucassen et al., 2019). Axonal growth
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in also limited in the adult brain and the expression of
plasticity has been restricted to changes in response
properties, whose nature is in general unknown. This
is not to say that the adult brain is devoid of plasticity.
Although some mechanisms supporting brain plasticity
may continue through life, for example myelination
(Wang and Young, 2014 and above), and synaptogen-
esis, the basis of adult plasticity is different and largely
discussed in this volume. Changes in synaptic strength,
including both increase and decrease, based on
Hebbian-like rules or other principles (Magee and
Grienberger, 2020), are clearly possible at any age
(Merzenich et al., 2014) and also provide the basis for
memory (Kandel, 2001; see Chapter 2 by Mancini
et al.). This kind of plasticity is typically reversible.
Local axonal sprouting and changes in dendritic spines
and synapses which might alter excitatory-inhibitory
balance are another mechanism of adult plasticity
(Knott et al., 2002, 2006; El-Boustani et al., 2018).
Ketamine administration was found to increase synap-
ses in the adult brain (Pryazhnikov et al., 2018 and
references therein) with therapeutic perspectives for
the treatment of depression. The role of astrocytes in
synaptic plasticity has been advocated (Singh and
Abraham, 2017). Changes in neural network whose
structural and functional complexity might escape us
for a long time (Innocenti, 2017) can lead to unpredict-
able shifts in processing simulating a holistic behavior
of brain function.

Kaas et al. (1983) and Merzenich et al. (1984) were
probably the first to report that in the adult animal
“When a restricted sector of somatosensory cortex is
deprived of its normal pattern of activation in adult mam-
mals by sectioning peripheral nerves or dorsal roots, or
by amputation of a body part, the affected cortex rapidly
becomes largely or completely reactivated by inputs
from adjoining and nearby skin fields.” The result was
ascribed to unmasking and potentiation of pre-existing
sub-threshold afferents as well as to sprouting of local
connections. The first mechanism was supported by
the finding that in the adult monkey which underwent
lesion of the primary motor cortex improved function
was sustained by enhanced activity in premotor cortex,
supplementary motor and cingulate motor cortex
(Rouiller and Olivier, 2004). The second mechanism
was validated by work in the visual system where a cor-
tical site corresponding to an artificial scotoma caused by
retinal lesion was found to be invaded by axons sprouting
from the surrounding intact cortex (Darian-Smith and
Gilbert, 1994). Remodeling of intrinsic axons in V1
was reported in monkeys trained to identify collinear
contours; changes consisted in addition as well as elimina-
tion of axonal segments imaged in-vivo (Van Kerkoerle
et al., 2018).

Caleo (2018) has reviewed several studies demon-
strating either enhanced or decreased callosal input after
adult cortical lesions in animals and in humans.

Several studies aimed at exploring the potential of
adult plasticity in regenerating long projections, in partic-
ular the corticospinal projections were initiated by the
finding that myelin associated proteins impair the regen-
eration long projections in the adult and the inhibition
can be overcome by anti-myelin antibody (Caroni and
Schwab, 1988; Schwab 1990). These efforts have met
with some success (Freund et al., 2009) although they still
encounter some unknown obstacles (Beaud etal., 2020) as
documented also by preliminary clinical trials (Kucher
etal., 2018). Other attempts to repristinate growth of long
connections in the adult included the use of peripheral
nerve grafts (David and Aguayo, 1981) bulbar olfactory
ensheathing cells (Tabakow et al., 2014) and other means
(Endo et al., 2009). It is probable that attempt to repristi-
nate growth of long axons in the adult by local action on
the adult axons will not be able to repristinate the condi-
tions which have allowed the precisely orchestrated
axonal growth to target in development.

ADAPTIVE VS MALADAPTIVE
PLASTICITY

Although, as mentioned in the introduction, the evolution-
ary goal of neuroplasticity may be that of favoring adapta-
tion of the animal to the environment, evidence of
neuroplasticity in pathological cases, including, autism,
schizophrenia and Alzheimer disease have been reported
(Oberman and Pascual-Leone, 2013). Some of the changes
may be caused by abnormal developmental trajectories
including neuronal migration (Ayoub and Rakic, 2015),
maintenance of projections which should have been elim-
inated or other developmentally based abnormalities in
connections (e.g., Innocenti et al., 2003; Herbert et al.,
2004; Zikopoulos and Barbas, 2010). Transcranial Mag-
netic Stimulation can alleviate the symptomatology in
some cases (Oberman and Pascual-Leone, 2013; see for
instance Chapter 5). Behavioral training successfully
recovered cortical network dysfunctions in a rodent model
of autism (Zhou et al., 2015). Attentional training has been
found to improve working memory (reviewed in Spencer-
Smith and Klingberg, 2015).

CONCLUSIONS

I have suggested that neuroplasticity is at the roots of
why the nervous system exists at all. That is, the nervous
system exists so that an input from the environment is
transformed into an output by the animal. In a cursory
way, I have described many aspects of neuroplasticity
which support this view. Changes in the brain, particu-
larly striking in development, are caused by sensory
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inputs, through the eyes, ears, skin, and probably mus-
cles. Other aspects of neuroplasticity seem to be related
to the adaptation of the brain to its body. The survival of
neuron number in development depends on the size of the
periphery, and cytoarchitectonic modifications are
related to the structure of sensory organs, were they skin
or retina. These adaptations might assist the brain to
implement the sense of body ownership, a non-trivial
operation which can be manipulated in adulthood
(Ehrsson et al., 2004; Blanke et al., 2015).

But is the response to the environment the only cause
of neuroplasticity? Or, is it because the manipulation of
sensory inputs are the only conditions easily amenable to
experiment and observation? Can one think of instances
of neuroplasticity other than those driven by peripheral
inputs? Perhaps one can, if one considers the brain a
machine whose overall performance can be improved
by tinkering. Therefore, one could consider changes in
the brain which decrease energy costs and/or improve
speed of information transfer (Wang et al., 2008). Also,
neuron number increases along the mammalian radiation
(Gabi et al., 2016) as does the number of cortical areas
(Kaas, 2013; Halley and Krubitzer, 2019). Finally, it
can be seen that morphological and functional hemi-
spheric lateralization are distinctive features of the
human brain. All these changes occur along the lines
of increased differentiation and improve brain perfor-
mance; but this kind of neuroplasticity is in the hands
of evolution and of its fiddling with developmental
mechanisms (Innocenti, 2011; Finlay and Uchiyama,
2015; Finlay and Huang, 2020), and fall beyond the
scope of the present chapter.

It is in no way clear that the kind and degree of neuro-
plasticity should remain the same across the mammalian
radiation. The case of myelin, in particular, seems to show
decreased plasticity in the human vs the rodent brain. This
calls for the emergence of a new discipline comparing the
various aspects of neuroplasticity across fila.

What can be said by now is that the far more robust
neuroplasticity of the developing compared to the adult
brain imposes the search and implementation of strate-
gies that might protect the brain of the child.
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